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This supplementary material is organized as follows. Section 1 shows the
mean opinion scores (MOSs) of all the stimuli of our database, associated with
their confidence intervals (CIs), for the 2 animations separately. Section 2
presents the content ambiguity analysis obtained by the MLE model. In sec-
tion 3, we justify the choice of the scales used in our objective metric CMDM.
Section 4 evaluates the prediction performance of each feature implemented in
CMDM after removing certain distortions. Section 5 provides the parameters of
the tested images quality metrics, as well as snapshots of the camera positions.
We illustrate, in section 6, the subjective scores with respect to objective metric
values for the textured 3D meshes dataset. Finally, section 7 assesses the per-
formance of the the tested metrics with and without integrating the viewpoint
(the visible parts) of 3D models.

1 Resulting MOSs

In this section, we present the MOSs and CIs acquired for our ground truth
database of 480 animated 3D graphics. Figure 1.a shows the results of the
stimuli in rotation, while Figure 1.b shows the results of those in zoom.
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(a) Stimuli animated with a slow rotation (R).
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(b) Stimuli animated with a slow Zoom (Z).

Figure 1: Overview of mean opinion scores of the stimuli, associated with their
confidence intervals. For a given distortion strength, the dots are horizontally
spaced apart to avoid overlapping.
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2 Content ambiguity

We analyzed the ambiguity of our source contents (ac), obtained by the MLE
model, for each viewpoint and animation (i.e. for each of our 6 HRTs: combina-
tions of 3 viewpoints and 2 animations). Figure 2 shows that the source models
animated with a zoom movement and displayed in viewpoint 1, are associated
with the highest content ambiguity. We recall that viewpoint 1 is the viewpoint
that covers most of the shape and carries the most information on color and
geometry.
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Figure 2: Content ambiguity ac of each source model associated with HRTs,
and its confidence interval.
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3 Scales

As stated in the paper, we developed a full-reference multiscale metric (CMDM )
for predicting the quality of colored meshes. We relied on Figures 3 to select
the most appropriate /relevant scales. We recall that the scale (hi) defines the
radius of the spherical neighborhood around each vertex v of the distorted mesh.
For each scale hi, we compute geometry and color based features over the local
corresponding neighborhood of v.
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Figure 3: Variation of Pearson (a) and Spearman (b) correlations between
CMDM and subjective scores, with respect to several scale values. BB is the
maximum bounding box length of the stimulus.

As can be seen, CMDM provides the best performances, in terms of PLCC
and SROCC correlations, for the following 3 scales: hi ∈ {0.003BB, 0.0045BB, 0.006BB},
where BB is the maximum bounding box length of the stimulus.
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4 Single feature prediction performance

This section evaluates the prediction performance of each feature implemented
in our multiscale metric. In this analysis, we did not consider stimuli distorted
with color quantization (QCol) to assess the performance of geometry-based
features (f1, f2, and f3), since this type of distortion is applied only on the
vertex colors and does not affect the model geometry at all. The correlations of
these individual features with the recovered MOSs, as well as their classification
abilities are reported in Table 1.
Similarly, for the color-based features (f4, f5, f6, f7, and f8), stimuli geomet-
rically quantized (QGeo) were not taken into account. Indeed, this distortion
superimposes the vertices of the stimulus, meaning that we cannot know or
control exactly which vertex color is taken into account in Unity’s import and
render pipelines. Results are reported in Table 2.

Table 1: Performance of geometry-based features.

Feature Id PLCC SROCC AUCDS AUCBW

Curvature comparison f1 0.78 0.752 0.647 0.902
Curvature contrast f2 0.723 0.736 0.616 0.882
Curvature structure f3 0.502 0.558 0.53 0.789

Table 2: Performance of color-based features.

Feature Id PLCC SROCC AUCDS AUCBW

Lightness comparison f4 0.644 0.785 0.713 0.878
Lightness contrast f5 0.743 0.796 0.729 0.911
Lightness structure f6 0.632 0.761 0.7 0.888
Chroma comparison f7 0.494 0.707 0.678 0.842
Hue comparison f8 0.457 0.533 0.627 0.761

Removing these distortions improves feature performances, especially the
geometry-based features.
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5 Settings for image quality metrics

We compared our metric with 3 state-of-the-art full-reference image quality met-
rics (IQMs): SSIM, HDR-VDP2, iCID. For SSIM, we considered a local window
of size 11 × 11 pixels. For the resolution used for HDR-VDP2, we considered
33.7 pixels per degree, which corresponds to the following experimental setting:
stimuli presented on a calibrated 23” LCD display (resolution 1920 × 1080 pixel)
at a constant viewing distance of 0.5m. The peak sensitivity parameter of HDR-
VDP2 was set to 2.4 and the selected output from this metric was the quality
prediction Q. For the iCID metric, we considered the default parameters:equal
weight of lightness, chroma, and hue, and use of chroma contrast and chroma
structure.

To apply these IQMs, we generate for each 3D object in our database, a
set of 18 snapshots taken from different viewpoints. To do so, the camera was
placed at regularly sampled positions around the stimulus, as shown in Figure
4.

Figure 4: Camera positions regularly sampled around the 3D object.
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6 Validation on a dataset of textured 3D meshes

To evaluate the robustness of our metric and to verify that it did not just
learn the distortions that are specific to our dataset, we tested CMDM on the
LIRIS Textured Mesh Database [1]. We included results of the IQMs presented
previously, as well as the results obtained by Guo et al. [1] for different metrics,
applied either on rendered videos of the stimuli (DCT , MS−SSIM and PSNR)
or directly on textured meshes (FQM , CM1 and CM2). Figure 5 illustrates the
subjective scores with respect to the values of these metrics. Note that, Figures
5.e, 5.f, 5.g, and 5.h are reprinted from [1].
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Figure 5: Scatter plot of subjective scores versus objective metric values for the
LIRIS Textured Mesh Database. Each point represents one stimulus. The fitted
logistic function is displayed in black.

[1] J. Guo, V. Vidal, I. Cheng, A. Basu, A. Baskurt, and G. Lavoue, “Subjective and
objective visual quality assessment of textured 3D meshes,” ACM Transactions on Applied
Perception, vol. 14, no. 2, 2016.
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7 Integration of the viewpoint

In section 7 of the paper, we studied the relevance of incorporating the viewpoint
(the visible parts) of the 3D model into objective metrics. Thus, we tested the
performance of our metric and that of IQMs according to 2 scenarios, using a
subset of 240 stimuli from our database:

• (1) Without integrating the visibility: we computed the IQMs on multiple
snapshots (18) taken from different viewpoints of the object. CMDM was
computed over all the vertices of the stimuli. The results are reported in
Table 3.

• (2) With integrating the visibility: IQMs were directly computed on the snap-
shot taken from the real viewpoint displayed to the observer (IQMvis) and
CMDM was computed only over the visible vertices (CMDMvis). The results
are reported in Table 4.

Table 3: Performance comparison of different metrics Without integrating the
viewpoint.

PLCC SROCC AUCDS AUCBW

CMDM 0.886 0.871 0.756 0.967
SSIM 0.773 0.768 0.697 0.915
HDR-VDP2 0.827 0.808 0.714 0.942
iCID 0.8 0.8 0.727 0.927

Table 4: Performance comparison of different metrics when integrating the view-
point.

PLCC SROCC AUCDS AUCBW

CMDMvis 0.886 0.866 0.755 0.967
SSIMvis 0.791 0.798 0.722 0.927
HDR-VDP2vis 0.805 0.826 0.661 0.943
iCIDvis 0.857 0.871 0.776 0.957
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