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Overview

This document presents the visual quality metric for 3D meshes with rich attributes, that we proposed in the
context of ANR-PISCo project (ANR-17-CE33-0005). The metric we proposed (CMDM ) is inspired by the
MSDM2 frameworks [6] and adapted to address multimodal nature of enriched data (geometry and color infor-
mation). CMDM is the �rst metric for quality assessment of 3D meshes with di�use colors, which works entirely
on the mesh domain, at vertex level. It is a full-reference data-driven metric, that incorporates perceptually-
relevant curvature-based and color-based features. Our metric demonstrates good results and stability over two
datasets.

Moreover, Meynet et al. [12] and our team worked together, so that we successfully designed and implemented
a metric for quality assessment of colored 3D point clouds (PCQM ), that considers the same initial collection
of color and geometric features as CMDM.



1. Toward an objective metric for

assessment of colored mesh quality

1.1 Introduction

Nowadays, three-dimensional (3D) graphics are widely used in many applications such as digital entertainment,
architecture and scienti�c simulation. These data are increasingly rich and detailed; as a complex 3D scene
may contain millions of geometric primitives, enriched with various appearance attributes such as texture maps
designed to produce a realistic material appearance. These huge data tend to be visualized on various devices
(e.g., smartphone, head mounted display) and possibly via the network. Therefore, to avoid latency or rendering
issues, there is a critical need for the compression and simpli�cation of these high quality 3D models. These
processing operations are lossy. They operate on both geometry and appearance attributes, which inevitably
introduce distortions that impact the perceived quality of the data and thus the quality of user experience
(QoE).

Objective quality metrics are thus critically needed to automatically predict the level of annoyance caused by
these operations. Most metrics in the literature evaluate only geometric distortions (i.e. they consider meshes
without appearance attributes), e.g. [6, 16, 17]. When it comes to meshes with di�use color information (either
in the form of texture or vertex-colors), little work has been published [15] [4]. Actually, for this kind of data,
it is still unclear how color and geometry distortions a�ect quality.

In this report, we address the problem of objective quality assessment of 3D models with di�use colors.
So, we designed an objective quality assessment metric for colored meshes: CMDM (Color Mesh Distortion
Measure). This is a full-reference data-driven metric that fully operates on the mesh domain, at vertex level. It
consists of a linear combination of perceptually-relevant features related to color and geometry. The optimal set
of features was selected through logistic regression. To evaluate the performance of CMDM, we used 2 subjective
ground-truths: the LIRIS Textured Mesh Database [4] and a dataset of animated meshes with vertex colors
(not published yet). Our metric demonstrates good results and a better stability than image quality metrics.

To the best of our knowledge, our proposed metric is the �rst attempt to integrate both geometry and color
information for quality assessment of meshes with di�use colors. The source code of the metric is made publicly
available1 on the MEsh Processing Platform (MEPP).

1.2 CMDM: Color Mesh Distortion Measure

As outlined in the introduction, constructing an objective metric for the quality assessment of 3D content with
appearance attributes is no trivial task. The main reasons are: (1) the multimodal nature of the data (geometry
and color or texture information) and (2) the complex processing pipeline that constructs the �nal rendered
image from the 3D content (computation of light-material interactions, viewpoint selection, and rasterization).
To overcome this problem, we consider a data-driven approach based on the results and data of a subjective
study we conducted. Thus, we propose an objective metric for colored mesh quality assessment as a linear
combination of accurate geometry and color quality measurements.

1.2.1 Overview of our approach

The metric we propose is a full-reference multiscale metric based on curvature and color statistics computed
on local corresponding neighborhoods from the original and distorted models. The metric is largely inspired
by the MSDM2 frameworks from which we take the curvature features and the neighborhood correspondence
mechanisms [6]. To address the color-related aspects of our metric, we consider the features introduced in the
2D image-di�erence framework of Lissner et al. [9]. Their color features have recently been used successfully
for the quality assessment of colored 3D point clouds [12].

1https://github.com/MEPP-team/MEPP2
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Our framework is as follows: For given distorted Mdist and reference Mref meshes, we �rst establish a
correspondence between Mdist and Mref (see section 1.2.2). Then for each scale hi, we de�ne a spherical
neighborhood around each vertex v of Mdist (see section 1.2.3) and compute a set of local geometry and color
based features over the points belonging to the neighborhood of v and their corresponding points on Mref (see
section 1.2.4). Local single-scale feature values are pooled into global multiscale features fj . Finally, CMDM
is de�ned as a linear combination of an optimal subset of features determined through logistic regression (see
section 1.2.5).

1.2.2 Correspondence between meshes

The �rst objective is to establish a correspondence between the meshes being compared (Mdist and Mref ).
Thus, we match each vertex v of the distorted mesh Mdist with its nearest 3D point v̂ on the surface of the
reference mesh Mref using a fast asymmetric projection (as in MSDM2, we consider the AABB tree structure
from CGAL [2]). Then, for each projected 3D point (v̂), we compute its curvature and color using barycentric
interpolation from vertices of the triangle it belongs to. This way, each vertex from Mdist has a corresponding
point on Mref (with a curvature and a color value).
The correspondence is scale-independent: it takes place once only at the beginning of the process. Nevertheless,
the curvature and color values of v̂ are updated for each scale hi.

1.2.3 Neighborhood Computation

As stated above, the features used in our metric are not computed globally on the entire mesh but locally at
multiple scales over spherical neighborhoods around each vertex. Thus as in [6], we de�ne, for each scale h, a
neighborhood N(v, h) of radius h around each vertex v ofMdist as the connected set of vertices belonging to the
sphere with center v and radius h. We also add to this neighborhood the intersections between this sphere and
the edges ofMdist. The curvature and color values of the intersection points are interpolated. Then, we consider
for the set of points belonging to N(v, h) their projected 3D points onMref (corresponding neighborhood of v̂).
Features are computed by considering curvature and color statistics over N(v, h) ∈Mdist and N(v̂, h) ∈Mref .
In this paper, we consider the following three scales: hi ∈ {0.003BB, 0.0045BB, 0.006BB}, where BB is the
maximum length of the Axis-Aligned Bounding Box (AABB) of the stimulus. The choice of these scales is
detailed and justi�ed in the supplementary material.

1.2.4 Perceptually relevant features

For each scale h, the following 8 features are computed over the local corresponding neighborhood of each vertex
v of Mdist.

A. Geometry-based features

These features are based on mean curvature information de�ned at multiple scales. To compute curvature,
we adopted the method developed by Alliez et al. [3], which evaluates the curvature tensor on a geodesic
neighborhood around each vertex. This method is interesting and robust because it avoids the problem of
sensitivity to connectivity (Mdist and Mref do not necessarily share the same connectivity nor the same level
of details). Note that, we used a radius r = h

3 for the computation of curvature as a good compromise between
small radii which capture tiny details and larger radii which provide strong smoothing e�ects.
As in [6], we consider the following geometry features:

Curvature comparison fh1 (v) =
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where k is a constant to avoid instability when denominators are close to zero (k = 1 as in [6]). Ch
v and Ch

v̂ are
Gaussian-weighted averages of curvature over the points belonging to the neighborhood N(v, h) and N(v̂, h),
respectively. Similarly, σCh

v
, σCh

v̂
and σCh

v Ch
v̂
are Gaussian-weighted standard deviations and covariance of cur-

vature over these neighborhoods.
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B. Color-based features

To compute the color features, we �rst transform the RGB color values of each vertex of the meshes being com-
pared (Mdist and Mref ) into the perceptually uniform color space LAB200HL [8]. Lissener et al. recommended
working in this color space since there is little cross contamination between the color attributes (lightness,
chroma, hue). Each vertex v has of a lightness and two chromatic values (Lv, av, bv). The chroma of the vertex
is as follows: Chv =

√
a2v + b2v.

We transposed for 3D meshes, the 2D image features proposed by [9]. These features take into account not
only the luminance but also the chroma and hue components to better assess the chromatic distortions.

Lightness comparison fh4 (v) =
1

c1(Lh
v − Lh

v̂ )2 + 1
(1.4)

Lightness contrast fh5 (v) =
σLh

v
σLh

v̂
+ c2

σ2
Lh

v
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(1.5)

Lightness structure fh6 (v) =
σLh

vL
h
v̂

+ c3

σLh
v
σLh

v̂
+ c3

(1.6)

Chroma comparison fh7 (v) =
1

c4(Chhv − Chhv̂ )2 + 1
(1.7)

Hue comparison fh8 (v) =
1

c5∆Hh
vv̂

2
+ 1

(1.8)

where Lh
v , L

h
v̂ , Ch

h
v and Chhv̂ denote the Gaussian-weighted averages of Lightness and Chroma computed

respectively over the set of points belonging to N(v, h) and N(v̂, h). σLh
v
, σLh

v̂
and σLh

vL
h
v̂
are Gaussian-

weighted standard deviations and covariance of lightness in the mentioned neighborhood. The term ∆Hh
vv̂

refers to the Gaussian-weighted average hue di�erence between N(v, h) and N(v̂, h). It is de�ned as follows:
∆Hvv̂ =

√
(av − av̂)2 + (bv − bv̂)2 − (Chv − Chv̂)2. The constants c1, c2, c3, c4 and c5 were set respectively to

0.002, 0.1, 0.1, 0.002 and 0,008 as in [9].

We invert the scaling of the color-based features so that they are consistent with curvature-based features
(i.e. each color feature fhj = 1− fhj ). This way, a value of 0 means that there is no local (geometric and color)
distortion around vertex v. All features ∈ [0, 1].

1.2.5 Global perceptual quality score

The set of local geometric and color features, presented in the subsection above, is computed for each vertex of
the distorted mesh and for each scale hi. The local multiscale measure of the features is simply the average of
its single-scale values.

fj(v) =
1

n

n∑
i=1

fhi
j (v) (1.9)

where n is the number of scales used. It is de�ned in section 1.2.3 as well as hi the scale values used (neighborhood
radii) .

We aim to obtain a global score of visual distortion according to each feature (fj). So, we average the local
values of each feature over all the vertices.

fj =
1

|Mdist|
∑

v∈Mdist

fj(v) (1.10)

where |Mdist| is the number of vertices of the distorted mesh. The features fj are all within the range [0, 1].
Our metric is then de�ned as a combination of the features fj . However, choosing the best combination model

is a crucial problem. For prediction of the color-image di�erences [9], the authors used a factorial combination
model, while Meynet et al. considered a linear model for their point cloud quality metric [12]. In our case, we
chose to consider a linear model: (1) to make the optimization easier and (2) because we tried nonlinear models
such as Minkowski pooling, which did not provide better performance. Thus, the global multiscale distortion
(GMD) score is computed as follows:

GMDMdist→Mref
=
∑
j∈S

wjfj (1.11)

S is the set of feature indexes of our linear model. wj weights the contribution of each feature to the overall
distortion prediction. GMDMdist→Mref

evaluates the distortion of the distorted model regarding the reference

Livrable n◦1.3 - November 3, 2020 Page 4



PISCo https://pisco.projet.liris.cnrs.fr/

model. In order to strengthen the robustness of our method and to obtain a symmetric measure, we also
compute GMDMref→Mdist

and we retain the average as the �nal distortion measure CMDM .

CMDM =
GMDMdist→Mref

+GMDMref→Mdist

2
(1.12)

As in [10], the optimal subset of features of CMDM and their corresponding weights are obtained through
an optimization computed by logistic regression. The optimization is based on cross-validation (see section
1.3.1).

1.3 Results and evaluation

In this section, we evaluate the performance of our metric and compare it to state-of-the-art approaches,
including 2D image metrics. To train and evaluate our metric, we used the ground truth database obtained from
one of our subjective studies (not published yet). The database used is composed of 80 stimuli, generated from
5 high-resolution triangle meshes, each having di�use color information represented by vertex colors (no texture
mapping). The source models have been corrupted by 4 types of distortion applied on geometry and color. These
selected distortions represent common simpli�cation and compression operations typically used in 3D model
modeling and post-processing. Each distortion was applied with 4 di�erent strengths, adjusted manually in order
to span the whole range of visual quality from imperceptible levels to high levels of impairment. The databaset
was produced from a subjective study based on Double Stimulus Impairment Scale (DSIS) methodology, as
recommended by [13]. Each stimulus was rated by at least 24 observers.

1.3.1 Toward an Optimal Combination of features

Our metric contains 8 di�erent features fj . In this 8 dimensional space, some features are obviously more
signi�cant than others. Also, features may be redundant with one another, and if all the features are taken
into account, this could potentially lead to an over�tting. Therefore, in the same vein as [10], we conduct two
Leave-One Out Cross-Validation tests (LOOCV) on the data obtained from our subjective experiment to select
an optimal subset of features. Each cross-validation test divides the database into a training set that serves to
optimize feature weights using linear regression and a test used for testing the obtained metric.

1. We split the training and test sets according to the source models. Given that there are 5 sources in our
database, we leave 1 source model and its distortions out for testing, while the remaining stimuli (4 models
* 16 distorted stimuli) are used for training. Thus after 5 folds, each source model has been used as a test
set.

2. Similar to test 1, but we divide the database according to the distortion types (regardless of the model). We
train the metric on 3 distortion types out of 4 (5 models * 12 distorted stimuli) and test on the fourth type.
After 4 folds, each distortion type has been used once for testing.

These 2 types of LOOCV tests provide a good measure of the robustness of our metric. We exhaustively search
through all possible combinations of features (255 combinations), and select the feature-subset that generates
the best average performance of CMDM over all the test sets (9 folds) in terms of the mean of Pearson Linear
Correlation Coe�cient (PLCC) and Spearman Rank Order Correlation Coe�cient (SROCC). We obtained that
the �nal model of our metric is composed of only 4 features: Curvature contrast (f2), Lightness contrast (f5)
and structure (f6) and chroma comparison (f7). The results of our metric and comparisons with state-of-the-art
approaches are reported in the following sections.

1.3.2 Comparisons of objective metrics

In this section, we present the results of the cross-validation tests, described in the previous subsection. As
an ablation study, we compare our metric with two of its versions trained with di�erent subsets of features:
CMDM_Geo that takes into account only the geometry features and CMDM_Col based only on color features.
As a baseline, we also include results of a classical color distance D_LAB, which is the average of the color
di�erence (in LAB2000HL) computed symmetrically between the reference and the distorted model. Finally, we
compare our metric with 3 state-of-the-art full-reference image quality metrics (IQMs): SSIM [18], HDR-VDP2
[11], iCID [14]. To apply these IQMs, we generate for each 3D object in our database, a set of 18 snapshots
taken from di�erent viewpoints (camera positions regularly sampled). The global quality score of a stimulus,
given by an IQM, is then the average of the objective scores over all its snapshots.

Figure 1.1 compares the overall performance of the tested metrics for the 2 cross-validation scenarios pre-
sented in 1.3.1. AUCDS and AUCBW are 2 measures (Area Under the Curve values), proposed by Krasula
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et al. [5], that determining the classi�cation abilities of the metrics according to two scenarios: (1) AUCDS

assesses how well can the metric distinguish between signi�cantly di�erent and similar pairs of stimuli, and (2)
AUCBW evaluates how well the metric is able to detect the stimulus of better quality in a signi�cantly di�erent
pair of stimuli. These measures take into account the uncertainty of the subjective scores.

AUC DS AUC BW

PLCC SROCC

Source models Distortion types Source models Distortion types

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

CMDM CMDM_Geo CMDM_Col D_LAB SSIM HDR−VDP2 iCID

Figure 1.1 � Performance comparison of several metrics on two cross-validation tests. Mean performance eval-
uation measures are reported. Error bars indicate the standard deviation over the test sets.

For the LOOCV test according to the source models, Figure 1.1 demonstrates that CMDM outperforms
other model-based metrics. It shows almost the same performance as IQMs in terms of correlations and detection
of better quality stimuli (AUCBW ). IQMs provide better results in identifying the signi�cantly di�erent pairs
of stimuli (AUCDS). We believe this is primarily related to the advantage of IQMs over our metric and other
model-based metrics regarding their natural incorporation/knowledge of the entire rendering pipeline. Indeed,
IQMs operate on snapshots that consider the same rendering, apparent brightness and lighting conditions as
those seen by participants. On the contrary, our metric only considers 3D data, without any knowledge of the
rendering conditions. Considering the LOOCV test among the distortions, we notice that our metric performs
better than the others, including IQMs. The color-based version of our metric (CMDM_Col) also produces
good results. IQMs show a signi�cant decrease in performance, compared to the LOOCV based on source
models. These observations corroborate previous results by Lavoué et al. [7]: image-based metrics perform
very well when evaluating the quality of di�erent versions of a single source, yet they are less accurate when
di�erentiating/ranking distortions applied on di�erent sources.
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1.3.3 Recommended weights

To provide the recommended model of our metric, we averaged the weights obtained for each training subset of
the two LOOCV tests. CMDM is thus de�ned, for the three selected scales (hi ∈ {0.003BB, 0.0045BB, 0.006BB}),
as follows:

CMDMrec = 0.091f2 + 0.22f5 + 0.032f6 + 0.656f7 (1.13)

In order to reveal the relative importance of each of the 4 features, we scaled the weights presented in the
equation above with the standard deviation of the features. Scaled weights are 0.333, 0.46, 0.07 and 0.136,
respectively, for f2, f5, f6 and f7. The curvature and lightness contrast features (f2 and f5) have the highest
overall importance. It would seem that users are particularly sensitive to artifacts that harm the contrast (both
geometric and color contrasts).

We evaluate the performance of the tested metrics, including CMDMrec, on the whole dataset (80 stimuli).
The results are reported in Table 1.1.

Table 1.1 � Performance comparison of di�erent metrics on the whole dataset.

PLCC SROCC AUCDS AUCBW

CMDMrec 0.913 0.9 0.782 0.968

CMDM_Geo 0.501 0.437 0.604 0.749
CMDM_Col 0.745 0.746 0.732 0.893
D_LAB 0.55 0.603 0.651 0.805
SSIM 0.797 0.799 0.716 0.912
HDR-VDP2 0.853 0.84 0.703 0.944
iCID 0.825 0.83 0.747 0.924

CMDM performs notably better than the others in terms of correlations. Moreover, the AUC values re�ect
its good classi�cation abilities in both Di�erent vs. Similar and Better vs. Worse analyses. This shows the
good robustness of our metric: it is able to di�erentiate and rank stimuli from di�erent sources and di�erent
distortions.

1.3.4 Validation on a dataset of textured 3D meshes

To evaluate the robustness of our recommended metric (eq. 1.13) and to verify that it did not just learn
the distortions that are speci�c to our dataset, we tested CMDMrec on a new dataset: the LIRIS Textured
Mesh Database [4]. We selected a subset containing a source model (a dwarf statue) corrupted by 36 mixed
distortions (combination of geometry and texture distortions). Before applying our metric, we transferred the
texture color information into vertex colors. The results are summarized in Table 1.2. We include results of the
IQMs presented previously, as well as the results obtained by Guo et al. [4] for di�erent metrics either applied
on rendered videos of the stimuli or directly applied on textured meshes.

Table 1.2 � Performance comparison of di�erent metrics on a new dataset. For metrics marked with a *, the
values are reprinted from [4].

PLCC SROCC

CMDMrec 0.862 0.872

SSIM 0.624 0.657
HDR-VDP2 0.83 0.844
iCID 0.502 0.552
Video-DCT* 0.32 0.50
Video-PSNR* 0.33 0.58
Video-MS-SSIM* 0.67 0.66
FQM* 0.64 0.66
CM1* 0.74 0.77
CM2* 0.80 0.85

Our metric provides the best results, although it was trained on a di�erent dataset presenting di�erent
sources and di�erent distortions and even a di�erent color representation.It outperforms CM2, which represents
the state-of-the-art of textured mesh quality assessment, and which was learned on similar data. This metric is a
global combination of mesh and texture distortion measures (MSDM2 and MS-SSIM, respectively). This tends
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to validate the fact that operating fully on the mesh domain (like our metric) ensures a better performance than
combining errors computed on di�erent domains (i.e., mesh and texture image). These results also con�rm the
great robustness of our metric compared to IQMs.

1.4 Conclusion and Future work

We developed a perceptually-validated full-reference metric CMDM for evaluating the quality of colored 3D
meshes. To achieve this, we adapted a set of perceptually-relevant curvature-based and color-based features. We
further show how to select an optimal subset of features and use them to train the metric (LOOCV tests using
a ground truth dataset). Extensive evaluation shows that CMDM provides good results and good stability
in terms of correlations and classi�cation abilities. It also demonstrates a good robustness: CMDM is able
to di�erentiate and rank stimuli from di�erent sources and di�erent distortions, unlike IQMs which perform
very well when assessing the quality of di�erent versions of a single source, but are less accurate when ranking
distortions applied on di�erent sources. Last but not least, we demonstrate that our metric can also be used
for textured meshes.
The metric code will be made publicly available online2 on the MEsh Processing Platform (MEPP).

As future work, we would also like to produce a huge subject-rated database of 3D models, in order to be
able to envisage the creation of end-to-end deep-learning approaches.
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User Guide

We present here the user manual for CMDM, an objective visual quality metric for 3D meshes with di�use
color, publicly available on the MEsh Processing Platform (MEPP2)3 .

CMDM is the �rst metric for quality assessment of meshes with di�use color information represented by ver-
tex colors (no texture mapping), which works entirely on the mesh domain, at vertex level. It is a full-reference
metric, based on an optimally-weighted linear combination of geometry-based and color-based features.

For more detail about this work, please refer to our paper: Y. Nehmé, F. Dupont, J.P. Farrugia, P. Le Callet,
and G. Lavoué, "Visual Quality of 3D Meshes with Di�use Colors in Virtual Reality: Subjective and Objective
Evaluation", IEEE Transactions on Visualization ans Computer Graphics, 2020.

Here are the steps to follow to use CMDM.
- Install MEPP2 using the following documentation: https://projet.liris.cnrs.fr/mepp/doc/nightly/

_install_wrapper_page.html

- To use the �lters implemented in MEPP2 (CMDM, MSDM2, JND ...), there are 2 options:

1. Using the GUI: After completing the installation of MEPP2, run the GUI. Open the reference and the
distorted models in the "space" mode (the 2 models are loaded into the same scene). Choose CGAL Surface
Mesh as a data structure of the models.
Afterward, go to the "Plugin �lters" menu and select the CMDM plugin. A small window appears containing
di�erent con�guration options:

(a) 1 to 2 : CMDMMdist→Mref
evaluates the distortion of the distorted model regarding the reference

model.

(b) 2 to 1 : CMDMMref→Mdist
evaluates the distortion of the refrence model regarding the distorted model.

(c) Symmetric:
CMDMMdist→Mref

+CMDMMref→Mdist

2 used to strengthen the robustness of CMDM and to
obtain a symmetric measure.

(d) Scales: determine the number of scales used to compute CMDM (since CMDM is a multiscale metric).
The smallest scale is 0.003BB, where BB is the maximum length of the bounding box of the stimulus.
Each scale is greater than the previous/smaller scale of 0.0015 (scale2 = sacle1 + 0.0015).

(e) Use CMDM as color map: display local distortions (at vertex level) as a color map.

2. Using the CMDM executable: There is an executable of CMDM, which considers a symmetrical measure
of the distortion and three scales (hi ∈ {0.003BB, 0.0045BB, 0.006BB}, where BB is the maximum length
of the bounding box of the stimulus).
example_CMDM.exe path_to_the_reference_mesh path_to_the_degraded_mesh

3https://github.com/MEPP-team/MEPP2

https://projet.liris.cnrs.fr/mepp/doc/nightly/_install_wrapper_page.html
https://projet.liris.cnrs.fr/mepp/doc/nightly/_install_wrapper_page.html
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